Sabtu, 09 November 2013

METODE PENGALAMATAN

Metode pengalamatan merupakan aspek dari set instruksi arsitekturdi sebagian unit pengolah pusat(CPU) desain yang didefinisikan dalam set instruksi arsitektur dan menentukan bagaimana bahasa mesinpetunjuk dalam arsitektur untuk mengidentifikasi operan dari setiap instruksi.. Sebuah mode pengalamatan menentukan bagaimana menghitung alamat memori yang efektif dari operand dengan menggunakan informasi yang diadakan di registerdan / atau konstanta yang terkandung dalam instruksi mesin atau di tempat lain.

Jenis-jenis metode pengamatan

1.Direct Absolute(pengalamatan langsung)

               | load | reg address| | Load | reg | alamat
Alamat address = Efektif seperti yang diberikan dalam instruksi)
             
  Hal ini membutuhkan ruang dalam sebuah instruksi untuk cukup alamat yang besar.. Hal ini sering tersedia di mesin CISC yang memiliki panjang instruksi variabel, seperti x86.. Beberapa mesin RISC memiliki Literal khusus Atas instruksi Load yang menempatkan sebuah 16-bit konstan di atas setengah dari register.. Sebuah literal instruksi ATAU dapat digunakan untuk menyisipkan 16-bit konstan di bagian bawah mendaftar itu, sehingga alamat 32-bit kemudian dapat digunakan melalui mode pengalamatan tidak langsung mendaftar, yang itu sendiri disediakan sebagai "base- plus-offset "dengan offset 0.

Syntax
Effectif adress
Loc
EA=Loc
Add,R1
R1←[R1]+[100]


Kelebihan
  • Field alamat berisi efektif address sebuah operand
  • Teknik ini banyak digunakan pada komputer lama dan komputer ecil
  • Hanya memerlukan sebuah referensi memori dan tidak memerlukan kalkulus khusus
Kelemahan
  • Keterbatasan field alamat karena panjang field alamat biasanya lebih kecil dibandingkan panjang word Contoh: ADD A ; tambahkan isi pada lokasi alamat A ke akumulator

2.Immidiate

Bentuk pengalamatan ini yang paling sederhana
  • Operand benar-benar ada dalam instruksi atau bagian dari instruksi = operand sama dengan field alamat
  • Umumnya bilangan akan disimpan dalam bentuk kompleent dua
  • Bit paling kiri sebagai bit tanda
  • Ketika operand dimuatkan ke dalam register data, bit tanda digeser ke kiri hingga maksimum word data Contoh: ADD 5 ; tambahkan 5 pada akumulator
Syntax
Effectif adress
#value
Operand=value
Add #10,R1
R1←[R1]+10

Keuntungan

            Tidak adanya referensi memori selain dari instruksi yang diperlukan untuk memperoleh operand Menghemat siklus instruksi sehingga proses keseluruhan akan cepat

Kekurangan
            Ukuran bilangan dibatasi oleh ukuran field alamat

3.indirect register
  • Metode pengalamatan register tidak langsung mirip dengan mode pengalamatan tidak langsung
  • Perbedaannya adalah field alamat mengacu pada alamat register.
  • Letak operand berada pada memori yang dituju oleh isi register
  • Keuntungan dan keterbatasan pengalamatan register tidak langsung pada dasarnya sama dengan pengalamatan tidak langsung
            Keterbatasan field alamat  diatasi dengan pengaksesan memori yang tidak langsung sehingga alamat yang dapat direferensi makin banyak Dalam satu siklus pengambilan dan penyimpanan, mode pengalamatan register tidak langsung hanya menggunakan satu referensi memori utama sehingga lebih cepat daripada mode pengalamatan tidak langsung

Syntax
Effectif adress
(Ri)
EA=[Ri]
Add,(R1),R1
R1←[R1]+[[R1]]

4.indirect- memori
           
Salah satu mode pengalamatan yang disebutkan dalam artikel ini bisa memiliki sedikit tambahan untuk menunjukkan pengalamatan tidak langsung, yaitu alamat dihitung menggunakan modus beberapa sebenarnya alamat dari suatu lokasi (biasanya lengkap kata) yang berisi alamat efektif sebenarnya. Pengalamatan tidak langsung dapat digunakan untuk kode atau data.. Hal ini dapat membuat pelaksanaan pointer atau referensi atau menanganilebih mudah, dan juga dapat membuat lebih mudah untuk memanggil subrutin yang tidak dinyatakan dialamati. Pengalamatan tidak langsung tidak membawa hukuman performansi karena akses memori tambahan terlibat.
           
Beberapa awal minicomputer (misalnya Desember PDP-8, Data General Nova) hanya memiliki beberapa register dan hanya rentang menangani terbatas (8 bit).Oleh karena itu penggunaan memori tidak langsung menangani hampir satu-satunya cara merujuk ke jumlah yang signifikan dari memori.

5.Register
            Pada beberapa komputer, register dianggap sebagai menduduki 16 pertama 8 atau kata-kata dari memori (misalnya ICL 1900, DEC PDP-10).. Ini berarti bahwa tidak perlu bagi yang terpisah "Tambahkan register untuk mendaftarkan" instruksi - Anda hanya bisa menggunakan "menambahkan memori untuk mendaftar" instruksi. Dalam kasus model awal PDP-10, yang tidak memiliki memori cache, Anda benar-benar dapat memuat sebuah loop dalam ketat ke dalam beberapa kata pertama dari memori (register cepat sebenarnya), dan berjalan lebih cepat daripada  di memori inti magnetik. Kemudian model dari DEC PDP-11seri memetakan register ke alamat di output / area input, tetapi ini ditujukan untuk memungkinkan diagnostik terpencil. register 16-bit dipetakan ke alamat berturut-turut byte 8-bit.

Syntax
Effectif adress
Ri
EA=Loc
Add,R2,R1
R1←[R1]+[R2]



6.Index

            Indexing adalah field alamat mereferensi alamat memori utama, dan register yang direferensikan berisi pemindahan positif dari alamat tersebut
  • Merupakan kebalikan dari mode base register
  • Field alamat dianggap sebagai alamat memori dalam indexing
  • Manfaat penting dari indexing adalah untuk eksekusi program-program iteratif
Syntax
Effectif adress
X(R2)
EA=[R2]+X
Add 10(R2),R1
R1←[R1]+[[R2]+10]


7.Base index

            Base index, register yang direferensi berisi sebuah alamat memori, dan field alamat berisi perpindahan dari alamat itu Referensi register dapat eksplisit maupun implicit.Memanfaatkan konsep lokalitas memori
Syntax
Effectif adress
R1,R2
EA=[R1]+[R2]
Add(R1,R2),R3
R3←[R3]+[[R1+[R2]]


8.base index plus offset

            Offset biasanya nilai 16-bit masuk (walaupun 80386 diperluas ke 32 bit). Jika offset adalah nol, ini menjadi contoh dari register pengalamatan tidak langsung, alamat efektif hanya nilai dalam register dasar. Pada mesin RISC banyak, register 0 adalah tetap sebesar nilai nol.. Jika register 0 digunakan sebagai register dasar, ini menjadi sebuah contoh dari pengalamatan mutlak.. Namun, hanya sebagian kecil dari memori dapat diakses (64 kilobyte, jika offset adalah 16 bit). 16-bit offset mungkin tampak sangat kecil sehubungan dengan ukuran memori komputer saat ini (yang mengapa 80386 diperluas ke 32-bit).. Ini bisa lebih buruk: IBM System/360 mainframe hanya memiliki 12-bit unsigned offset.. Namun, prinsip berlaku: selama rentang waktu yang singkat, sebagian besar item data program ingin mengakses cukup dekat satu sama lain. Mode pengalamatan ini terkait erat dengan mode pengalamatan terindeks mutlak. Contoh 1: Dalam sebuah sub rutin programmer terutama akan tertarik dengan parameter dan variabel lokal, yang jarang akan melebihi 64 KB, yang satu basis register (yang frame pointer) sudah cukup. Jika rutin ini adalah metode kelas dalam bahasa berorientasi objek, kemudian register dasar kedua diperlukan yang menunjuk pada atribut untuk objek saat ini (ini atau diri dalam beberapa bahasa tingkat tinggi). Contoh 2: Jika register dasar berisi alamat dari sebuah tipe komposit (record atau struktur), offset dapat digunakan untuk memilih field dari record (catatan paling / struktur kurang dari 32 kB).

Syntax
Effectif adress
X(R2)
EA=+[R1]+[R2]+X
Add,10(R1,R2),R3
R3←[[R3]+][R1]+[R2]]+10}

9.Relatif

            PengalamatanRelative, register yang direferensi secara implisit adalah program counter (PC)Alamat efektif didapatkan dari alamat instruksi saat itu ditambahkan ke field alamat Memanfaatkan konsep lokalitas memori untuk menyediakan operand-operand berikutnya

Syntax
Effectif adress
Ri
EA=Ri
Add R2,R1
R1←[R1]+[R2]

Referensi

SET INSTRUKSI

Set intruksi berupa jenis intruksi teknik pengalamatan, system bust, CPU dan I/O Set Intruksi Mode & Format Pengalamatan SET INSTRUKSI MATERI OR-AR KOMPUTER KARAKTERISTIK DAN FUNGSI SET INSTRUKSI
 
* Operasi dari CPU ditentukan oleh instruksi-instruksi yang dilaksanakan atau dijalankannya. Instruksi ini sering disebut sebagai instruksi mesin (mechine instructions) atau instruksi komputer (computer instructions). 
* Kumpulan dari instruksi-instruksi yang berbeda yang dapat dijalankan oleh CPU disebut set Instruksi (Instruction Set). 

ELEMEN-ELEMEN DARI INSTRUKSI MESIN (SET INSTRUKSI) 

* Operation Code (opcode) : menentukan operasi yang akan dilaksanakan 
* Source Operand Reference : merupakan input bagi operasi yang akan dilaksanakan 
* Result Operand Reference : merupakan hasil dari operasi yang dilaksanakan 
* Next instruction Reference : memberitahu CPU untuk mengambil (fetch) instruksi berikutnya setelah instruksi yang dijalankan selesai. Source dan result operands dapat berupa salah satu diantara tiga jenis berikut ini: 
  • Main or Virtual Memory 
  • CPU Register 
  • I/O Device 

DESAIN SET INSTRUKSI
Desain set instruksi merupakan masalah yang sangat komplek yang melibatkan banyak aspek, diantaranya adalah: 
  1. Kelengkapan set instruksi 
  2. Ortogonalitas (sifat independensi instruksi) 
  3. Kompatibilitas : - Source code compatibility - Object code Compatibility 

Selain ketiga aspek tersebut juga melibatkan hal-hal sebagai berikut: 
  1. Operation Repertoire: Berapa banyak dan operasi apa saja yang disediakan, dan berapa sulit operasinya 
  2. Data Types: tipe/jenis data yang dapat olah Instruction Format: panjangnya, banyaknya alamat, dsb. 
  3. Register: Banyaknya register yang dapat digunakan 4.Addressing: Mode pengalamatan untuk operand 

FORMAT INSTRUKSI 

* Suatu instruksi terdiri dari beberapa field yang sesuai dengan elemen dalam instruksi tersebut. Layout dari suatu instruksi sering disebut sebagai Format Instruksi (Instruction Format). 

OPCODE OPERAND REFERENCE OPERAND REFERENCE JENIS-JENIS OPERAND 

* Addresses (akan dibahas pada addressing modes) 
* Numbers : - Integer or fixed point - Floating point - Decimal (BCD) 
* Characters : - ASCII - EBCDIC 
* Logical Data : Bila data berbentuk binary: 0 dan 1 

JENIS INSTRUKSI 

* Data processing: Arithmetic dan Logic Instructions 
* Data storage: Memory instructions 
* Data Movement: I/O instructions 
* Control: Test and branch instructions 

TRANSFER DATA 

* Menetapkan lokasi operand sumber dan operand tujuan. 
* Lokasi-lokasi tersebut dapat berupa memori, register atau bagian paling atas daripada stack. 
* Menetapkan panjang data yang dipindahkan. 
* Menetapkan mode pengalamatan. 
* Tindakan CPU untuk melakukan transfer data adalah : 
    a. Memindahkan data dari satu lokasi ke lokasi lain. 
    b. Apabila memori dilibatkan : 
          1. Menetapkan alamat memori. 
          2. Menjalankan transformasi alamat memori virtual ke alamat memori aktual. 
          3. Mengawali pembacaan / penulisan memori 

Operasi set instruksi untuk transfer data : 

* MOVE : memindahkan word atau blok dari sumber ke tujuan 
* STORE : memindahkan word dari prosesor ke memori. 
* LOAD : memindahkan word dari memori ke prosesor. 
* EXCHANGE : menukar isi sumber ke tujuan. 
* CLEAR / RESET : memindahkan word 0 ke tujuan. 
* SET : memindahkan word 1 ke tujuan. 
* PUSH : memindahkan word dari sumber ke bagian paling atas stack. 
* POP : memindahkan word dari bagian paling atas sumber 

ARITHMETIC

Tindakan CPU untuk melakukan operasi arithmetic : 
  1. Transfer data sebelum atau sesudah. 
  2. Melakukan fungsi dalam ALU. 
  3. Menset kode-kode kondisi dan flag. 

Operasi set instruksi untuk arithmetic : 
1. ADD : penjumlahan 5. ABSOLUTE 
2. SUBTRACT : pengurangan 6. NEGATIVE 
3. MULTIPLY : perkalian 7. DECREMENT 
4. DIVIDE : pembagian 8. INCREMENT 
Nomor 5 sampai 8 merupakan instruksi operand tunggal. LOGICAL 

* Tindakan CPU sama dengan arithmetic 
* Operasi set instruksi untuk operasi logical : 
1. AND, OR, NOT, EXOR 
2. COMPARE : melakukan perbandingan logika. 
3. TEST : menguji kondisi tertentu. 
4. SHIFT : operand menggeser ke kiri atau kanan menyebabkan konstanta pada ujung bit. 
5. ROTATE : operand menggeser ke kiri atau ke kanan dengan ujung yang terjalin. 

CONVERSI

 Tindakan CPU sama dengan arithmetic dan logical. 
* Instruksi yang mengubah format instruksi yang beroperasi terhadap format data. 
* Misalnya pengubahan bilangan desimal menjadi bilangan biner. 
* Operasi set instruksi untuk conversi : 
1. TRANSLATE : menterjemahkan nilai-nilai dalam suatu bagian memori berdasrkan tabel korespodensi. 
2. CONVERT : mengkonversi isi suatu word dari suatu bentuk ke bentuk lainnya. 

INPUT / OUTPUT 

* Tindakan CPU untuk melakukan INPUT /OUTPUT : 
1. Apabila memory mapped I/O maka menentukan alamat memory mapped. 
2. Mengawali perintah ke modul I/O 

* Operasi set instruksi Input / Ouput : 
1. INPUT : memindahkan data dari pernagkat I/O tertentu ke tujuan 
2. OUTPUT : memindahkan data dari sumber tertentu ke perangkat I/O 
3. START I/O : memindahkan instruksi ke prosesor I/O untuk mengawali operasi I/O 
4. TEST I/O : memindahkan informasi dari sistem I/O ke tujuan TRANSFER CONTROL 

* Tindakan CPU untuk transfer control : Mengupdate program counter untuk subrutin , call / return. 

* Operasi set instruksi untuk transfer control : 
1. JUMP (cabang) : pemindahan tidak bersyarat dan memuat PC dengan alamat tertentu. 
2. JUMP BERSYARAT : menguji persyaratan tertentu dan memuat PC dengan alamat tertentu atau tidak melakukan apa tergantung dari persyaratan. 
3. JUMP SUBRUTIN : melompat ke alamat tertentu. 
4. RETURN : mengganti isi PC dan register lainnya yang berasal dari lokasi tertentu. 
5. EXECUTE : mengambil operand dari lokasi tertentu dan mengeksekusi sebagai instruksi 
6. SKIP : menambah PC sehingga melompati instruksi berikutnya. 
7. SKIP BERSYARAT : melompat atau tidak melakukan apa-apa berdasarkan pada persyaratan 
8. HALT : menghentikan eksekusi program. 
9. WAIT (HOLD) : melanjutkan eksekusi pada saat persyaratan dipenuhi 
10. NO OPERATION : tidak ada operasi yang dilakukan. 

CONTROL SYSTEM 

* Hanya dapat dieksekusi ketika prosesor berada dalam keadaan khusus tertentu atau sedang mengeksekusi suatu program yang berada dalam area khusus, biasanya digunakan dalam sistem operasi. * Contoh : membaca atau mengubah register kontrol. 

JUMLAH ALAMAT (NUMBER OF ADDRESSES) 

* Salah satu cara tradisional untuk menggambarkan arsitektur prosessor adalah dengan melihat jumlah alamat yang terkandung dalam setiap instruksinya. 
* Jumlah alamat maksimum yang mungkin diperlukan dalam sebuah instruksi : 
1. Empat Alamat ( dua operand, satu hasil, satu untuk alamat instruksi berikutnya) 
2. Tiga Alamat (dua operand, satu hasil) 
3. Dua Alamat (satu operand merangkap hasil, satunya lagi operand) 
4. Satu Alamat (menggunakan accumulator untuk menyimpan operand dan hasilnya) 

Macam-macam instruksi menurut jumlah operasi yang dispesifikasikan 
1. O – Address Instruction 
2. 1 – Addreess Instruction. 
3. N – Address Instruction 
4. M + N – Address Instruction 

Macam-macam instruksi menurut sifat akses terhadap memori atau register 
1. Memori To Register Instruction 
2. Memori To Memori Instruction 
3. Register To Register Instruction

Referensi
-  Serdiwansyah N. A. Set Instruksi dan Teknik Pengalamatan Teknik Elektro Universitas Negeri  Makasar (09-11-13)
http://raditfa.blogspot.com/2012/11/arsitektur-set-instruksi-dan-teknik.html  (09-11-13)
http://id.wikipedia.org/wiki/Set_instruksi (09-11-13)
http://id.wikipedia.org/wiki/Central_processing_unit  (09-11-13)